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A Practical Guide to GMM

Abstract

We explain how and why Generalized Method of Moments (GMM)

works. We identify problem areas in implementation and we give

tactical GMM estimation advice, troubleshooting tips, and pseudo

code. We pay particular attention to proper choice of moment condi-

tions, exactly-identi�ed versus over-identi�ed estimation, estimation

of Newey-West standard errors, and numerical optimization in the

presence of multiple local extrema.

JEL Classi�cation: A23, C13, C23, G13.

Keywords: Generalized Method of Moments, GMM, Newey-West.



I Introduction

Generalized Method of Moments (GMM) has been in existence since 1982,

but a lack of adequate explanation in the literature has lead to underutiliza-

tion in �nancial economics. We use a simple example to explain how and

why GMM works. We then draw on our experience with GMM estimation

of option pricing models to give tactical estimation advice, troubleshooting

tips, and pseudo-code. Our intended audience includes empirical �nancial

economics researchers and students of econometrics.

The paper proceeds as follows: in Section II we explain how and why

GMM works via an extended yet simple example; in Section III we explain

the attractive features of GMM; in Section IV we give GMM implementation

advice; Section V concludes; and Appendix A presents pseudo code for GMM

estimation.

II Understanding GMM { A Simple Example

Generalized method of moments is a generalization of the classical Method

of Moments (MOM) estimation technique. The classical MOM technique

equates sample and population moments to enable estimation of population

1



parameters. We think that MOM, GMM, and the relationship between them

are best understood via a simple example (ours is a much-expanded version

of one given by Hamilton (1994, pp409-412)). A much more sophisticated

application of GMM to actual option pricing data appears in Section IV.

Suppose we have data Y1; : : : ; YT distributed Student-t with � degrees

of freedom, and we want to estimate �. It is well known that the mean

and variance of a Student-t are E(Yt) = 0, and E(Y 2
t ) =

�
��2

, respectively,

for � > 2 (Evans et al (1993)). By equating the sample second moment

�̂2 = 1
T

PT
t=1 Y

2
t and the population second moment �

��2
, we may deduce a

MOM estimator for � as in Equation (1).

�̂(1) =
2�̂2

�̂2 � 1
: (1)

For data distributed Student-t, it is also known that the population fourth

moment satis�es �4 = E(Y 4
t ) =

3�2

(��2)(��4)
when � > 4 (Evans et al (1993)).

Suppose we equate the sample fourth moment �̂4 =
1
T

PT
t=1 Y

4
t and the pop-

ulation fourth moment 3�2

(��2)(��4)
, and solve for �. After manipulation, the

quadratic nature of the problem yields two additional MOM solutions for �.
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Without loss of generality call both solutions \�̂(2)" as in Equation (2).

�̂(2) =
3�̂4 �

q
�̂4(�̂4 + 24)

(3�̂4 � 3)
: (2)

In repeated simulations we �nd that only one of the two quadratic solutions

in Equation (2) is close to the �̂(1) of Equation (1) { the other is spurious

and should be discarded.1 Thus we obtain two estimators of the degrees of

freedom for the Student-t distribution: �̂(1), and �̂(2).

The estimators �̂(1) and �̂(2) are based on the sample statistics �̂2, and

�̂4 respectively. If these latter statistics are by chance equal to the true

parameters (i.e. �̂2 = �2, and �̂4 = �4), then our two estimators �̂(1) and

�̂(2) are identical and are equal to the true �. However, both �̂2, and �̂4 are

necessarily estimated with error. Their sampling distributions are continuous

probability densities, so it follows that although our two estimators of � are

similar, the chance that they are the same in practice is zero. Thus the

parameter � is over identi�ed and no single �̂ will solve both Equations (1)

and (2).

To illustrate we simulate 1,000 independent drawings Y1; : : : ; Y1000 from

a Student-t distribution with � = 10 degrees of freedom. For our simulated
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data set we get �̂(1) = 9:252 and �̂(2) = 10:408 (the other quadratic root

is �̂(2) = 1:529 and we discard it as spurious). We see that although both

�̂(1) and �̂(2) are close to the true � = 10, the sampling error in the second

and fourth moments respectively yields distinct estimators of the degrees of

freedom �.

Equations (1) and (2) are transformations of the original moment-matching

conditions repeated here in Equations (3).

�̂2 =
�

� � 2
; and �̂4 =

3�2

(� � 2)(� � 4)
: (3)

From our sampling error arguments it follows that no single MOM estimator

�̂ can solve both moment-matching conditions in Equations (3). With two

estimators �̂(1) = 9:252 and �̂(2) = 10:408, how then are we to choose a single

sensible MOM estimator for �̂?

The solution is to generalize our MOM approach for estimating � by

introducing a 2� 2 weighting matrix W that re
ects our con�dence in each

moment-matching condition in Equations (3). We execute this by stacking
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our previous moment-matching conditions into a vector g as in Equation (4).

g(�) �

26664 �̂2 � �
��2

�̂4 � 3�2

(��2)(��4)

37775 : (4)

We then minimize the scalar quadratic objective functionQ(�) = g(�)0Wg(�)

with respect to choice of �. The contents of W describe the relative impor-

tance of each moment-matching condition in determining �̂. If the matrix

W is simply the 2� 2 identity,2 then the objective function reduces to

Q(�) = g(�)0g(�)

=
�
�̂2 � �

� � 2

�2
+

"
�̂4 � 3�2

(� � 2)(� � 4)

#2
:

If we think of the moment conditions as residuals (i.e. deviations from their

ideal value of zero), then an identity weighting matrix reduces the quadratic

objective function to a sum of squared residuals, and it reduces the optimiza-

tion to a traditional least squares problem.

More generally, the weighting matrix W should place more weight on the

moment-matching conditions in which we have more con�dence. The obvious

choice for a W that is directly related to our con�dence in the moment
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conditions in Equation (4) is the inverse of the variance-covariance matrix

(VCV) of the moment conditions. In practice, rather than inverting the

VCV of the vector g, we shall invert the asymptotic VCV de�ned as 
 �

var(
p
Tg) = Tvar(g). This VCV is typically a function of the estimator

itself, but we suppress the dependence of 
 on � for ease of notation. Thus

we shall minimize Q(�) = g(�)0
�1g(�).

How are we to think of the minimization of the objective function Q(�)?

A simple analogy is that when evaluated at the optimum �̂, the objective

Q(�̂) = g(�̂)0
̂�1g(�̂) is similar to a squaring of a scaled version of the tra-

ditional t-statistic for testing whether a population mean is zero as reported

in Equation (5).

8>>>><>>>>:
 

1p
T

!
| {z }
scale factor

�
"
�̂� 0

�̂=
p
T

#
| {z }
t-statistic

9>>>>=>>>>;

2

= (�̂� 0)

24T  �̂p
T

!2
35�1 (�̂� 0): (5)

The analogy follows because: g(�̂) and (�̂ � 0) should be zero under their

respective null hypotheses; g(�̂) and (�̂�0) appear fore and aft in their respec-

tive expressions; 
̂ and [T (�̂=
p
T )2] are the estimated asymptotic variances

of g(�̂) and �̂ respectively (i.e. you divide them by T to get actual vari-
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ances of g(�̂) and �̂ respectively in large sample); and �nally, the asymptotic

variances are inverted in the kernels of both expressions.

When minimizing the objective function Q(�), we are building through

choice of �̂ a test statistic least likely to reject the hypothesis that the mo-

ments are zero. If we multiply the optimized objective function by T , we

get an asymptotically chi-squared test statistic for whether the moment con-

ditions are zero.3 Thus by construction the GMM estimator of � is that

value of � statistically least likely to reject the null hypothesis that the mo-

ments g(�) are zero. This optimal � is selected via weighted least squares

minimization of a quadratic function of moment conditions.

In the case of our simulation of 1,000 observations from a Student-t,

the objective function Q(�̂) = g(�̂)0
̂�1g(�̂) is shown in Figure 1. A sim-

ple numerical minimization of the objective function in Figure 1 locates the

GMM estimator �̂ = 11:337. Our two MOM estimators �̂(1) = 9:252 and

�̂(2) = 10:408 bracket the true �, but the GMM estimator is outside of this

range.4 The numerical ordering of �̂(1), �̂(2), and the GMM estimator vary

with the random seed used in the simulation.

The next question is how to get the standard error of our GMM esti-

mator. We need to give more details of the formal GMM setup and the
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VCV estimations to answer this question. Hansen's (1982) GMM is a for-

malization of our technique. Assume the underlying data Xt are stationary

and ergodic.5 We use economic theory and intuition (see examples in our

Section IV) to obtain q unconditional moment restrictions on f (a vector of

functions) for true parameter vector �0:

f(Xt; �0) =

266666666666664

f1(Xt; �0)

f2(Xt; �0)

...

fq(Xt; �0)

377777777777775
; where E[f(Xt; �0)] =

0BBBBBBBBBBBBB@

0

0

...

0

1CCCCCCCCCCCCCA
:

For admissible �, we let gT (�) � 1
T

PT
t=1 f(Xt; �). In our Student-t example

we are implicitly using

f(Yt; �) =

26664 f1(Yt; �)

f2(Yt; �)

37775 =
26664 Y 2

t � �
��2

Y 4
t � 3�2

(��2)(��4)

37775 for t = 1; : : : ; T

to get g(�) =
1

T

TX
t=1

f(Yt; �) =

26664 �̂2 � �
��2

�̂4 � 3�2

(��2)(��4)

37775 :

Let WT be positive de�nite such that limT!1WT = W , where W is posi-
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tive de�nite, then the GMM estimator �̂GMM is the choice of � that mini-

mizes the scalar quadratic objective function QT (�) = gT (�)
0WTgT (�) (we

argue shortly that WT = 
�1). If we assume that a weak law of large num-

bers applies to the average g, so that gT (�)
T! E[gT (�)], and in particular

gT (�0)
p! 0, then �̂GMM is consistent for the true �0. Assume a central limit

theorem applies to f(Xt; �0), so that the (appropriately scaled) sample mean

g of the ft's satis�es
p
TgT (�0)

\a"� N (0;
) (where 
 is the asymptotic VCV

of g).

If q = p (the number of restrictions in f equals the number of parameters

in �0), then �0 is exactly identi�ed, and �̂GMM is independent of choice of

the weighting matrix. However, if q > p, �0 is over identi�ed. In this case

di�erent weighting matrices lead to di�erent �̂GMM . In either case, a numer-

ical optimization routine (e.g. Newton-Raphson, or Berndt et al (1974)) is

typically but not always needed to �nd �̂GMM . Hansen (1982) shows that in

the over-identi�ed case, W0 = 
�1 gives the asymptotically eÆcient GMM

estimator (consistent with our earlier intuition that the weights should be

inversely related to our uncertainty regarding the moments). The GMM
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estimator �̂GMM is asymptotically Normal, with

p
T (�̂GMM � �0)

\a"� N [0; VGMM ]; where

VGMM = (�0
�1�)�1;

� = E

 
@gT (�0)

@� 0

!
= E

 
1

T

TX
t=1

@f(Xt; �0)

@� 0

!
; and


 = E[
p
TgT (�0) �

p
TgT (�0)

0]

= E

264 1
T

TX
t=1

TX
s=1

f(Xt; �0)| {z }
q�1

f(Xs; �0)
0| {z }

1�q

375 :

The matrix 
 gives the asymptotic VCV of the moment conditions g.6 To

get from 
 to the asymptotic VCV of the parameter vector �̂GMM we need

the matrix � to capture the relationship between the moments and the pa-

rameters. This is why � pre- and post-multiplies 
�1 in the calculation of

the VCV matrix of the parameters. � can sometimes be calculated explicitly.

Otherwise it is estimated using �̂ = 1
T

PT
t=1

@f(Xt;�̂GMM )
@�0

, which is typically a

function of �̂GMM . In our Student-t example, the data are IID, so � reduces

to

� = E

"
@f(Yt; �)

@�

#
=

26664
2

(��2)2

6�(3��8)
(��2)2(��4)2

37775 ; (6)

and we estimate � during the optimization by substituting in �̂.
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Assume the components of the moment vector f(Xt; �0) are not auto- or

cross-correlated at any non-zero lag (i.e. E[fi(Xt; �0)fj(Xs; �0)] = 0 for all

t 6= s and for any i and j). If f is potentially heteroskedastic (i.e. var(fi) 6=

var(fj) for some i and j), then the matrix 
 may be estimated using the

White (1980) estimator in Equation (7).


̂WHITE =
1

T

TX
t=1

f(Xt; �̂GMM)f(Xt; �̂GMM)
0: (7)

It may be seen that the ijth element of 
̂WHITE estimates the ijth element

of the asymptotic VCV of the vector g as follows.

var
�p

Tg
�
ij

= cov
�p

Tgi;
p
Tgj

�
= E

�p
Tgi
p
Tgj

�
= TE(gigj)

= TE

"
1

T

TX
t=1

fi(Xt; �0) � 1
T

TX
s=1

fj(Xs; �0)

#

=
1

T

TX
t=1

TX
s=1

E[fi(Xt; �0)fj(Xs; �0)]

=
1

T

TX
t=1

E[fi(Xt; �0)fj(Xt; �0)] + cross terms

= E[fi(Xt; �0)fj(Xt; �0)]
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� 1

T

TX
t=1

fi(Xt; �0)fj(Xt; �0);

which is just the ijth element of the White estimator in Equation (7). In the

above, we use the fact that E(gi) = E(gj) = 0, we denote the ith and jth

elements of the vector f as fi, and fj respectively, the cross-terms are zero

because the moments are assumed uncorrelated (i.e. they have no own- or

cross-correlation at any non-zero lag), and at the last step we use the Weak

Law of Large Numbers.

If the components of the vector of moments f(�0) do exhibit auto- or

cross-correlation (i.e. E[fi(Xt; �0)fj(Xs; �0)] 6= 0 for some i, j, and some

t 6= s), and are also potentially heteroscedastic, then the Newey-West (1987)

estimator of 
 may be used (Equation (8)). Practical choice of lag length m

is discussed in Section C.


̂NW = �̂0 +
mX
j=1

w(j;m)(�̂j + �̂0j); m� T; where (8)

�̂j � 1

T

TX
t=j+1

f(Xt; �̂GMM)f(Xt�j; �̂GMM)0; and

w(j;m) = 1� j

(m + 1)
:
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Note that �̂0 in Equation (8) is just White's estimator, which Newey-West

extends. Thus the Newey-West estimator is robust to both heteroskedasticity

and autocorrelation of the components of the moment vector f . The White

and Newey-West estimators are not the only estimators available for 
 (see

Ogaki(1993), Hamilton (1994)).

To avoid any misunderstanding, let us emphasize that the White and

Newey-West VCV matrix estimators as used here provide standard errors

that are robust to heteroskedasticity and autocorrelation in the moment

conditions ft, but not necessarily in the underlying data Xt. However, if

you have autocorrelation or heteroskedasticity in the underlying data, and

this generates autocorrelation or heteroskedasticity in the moments, then

your standard errors are robust to these latter deviations. Using White and

Newey-West are thus analogous to assuming your data are stationary when

using OLS, but allowing for non-spherical residuals { the GMM moment

conditions are e�ectively model residuals. Note also that although di�er-

ent moments may have di�erent variances, the variance structure must be

stationary else GMM is not valid.

If q > p (so that the parameters are over-identi�ed), then as suggested

earlier, multiplying the objective function by the sample size yields a chi-
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squared test statistic at the optimum (Equation (9)).

T �QT (�̂GMM) = Tg(�̂)0
̂�1g(�̂)
\a"� �2

q�p; (9)

The distribution in Equation (9) assumes QT (�) is minimized usingW = 
�1

(Hansen (1982)). This is a large sample test of whether the sample moments

gT (�̂GMM) are as close to zero as would be expected if the expectation of

the population moments E[f(Xt; �0)] are truly zero. It is a test of model

speci�cation and is particularly strong if it rejects (after all, we choose �̂GMM

speci�cally to minimize the likelihood that this test will reject).

The chi-squared test statistic in Equation (9) is a quadratic function of the

moment conditions. If the test statistic rejects, then the underlying model

that generated the system of moment conditions is declared invalid. It is

thus important that we select an informative set of moment conditions if the

chi-squared test statistic is to truly test the model being estimated. Passing

the chi-squared test is no guarantee of statistical signi�cance of individual

parameter estimators. Thus the best set of moment conditions will be those

that not only pass the chi-squared test, but also admit the least number

of possible values for a given model parameter (i.e. a low standard error).
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There is some potential for an unscrupulous econometrician to game the chi-

squared test via choice of moment conditions. We illustrate both sensible and

non-sensible moment condition choices and discuss gaming the chi-squared

statistic in Section IV.

Continuing our Student-t example, Table 1 reports results from several

simulations of increasing sample size. In each case the two MOM estimators

�̂(1), and �̂(2) are reported, along with the GMM estimator �̂GMM , the stan-

dard error of the GMM estimator, and the chi-squared goodness-of-�t test

(there are q = 2 moments, and p = 1 parameters, so it is a �2
1 statistic).

Only in the case T = 10; 000 does the statistic reject, and that is probably a

Type-I error. The standard errors fall as the sample size rises and the GMM

estimator is quite close to the true degrees of freedom (� = 10) in the larger

samples, but in each case (at least in this simulation) �̂GMM > � = 10.

III Attractive Features of GMM

The �rst attractive feature of GMM is that it is distributionally nonparamet-

ric. Unlike MLE, it does not place distributional assumptions on the data.

However, the GMM moment conditions are certainly functionally parametric
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{ you must impose a speci�c functional form. GMM's initial assumptions of

stationarity and ergodicity are also relatively weak compared to the more tra-

ditional assumption that the data are IID. However, the resulting statistics

are all asymptotic, so a sizable sample is required

GMM is well-suited to horribly non-linear models such as option pricing

models. This is partly because no matter how ugly the option pricing model,

it still generates natural moment conditions. Examples include \model price

less market price equals zero." These moment conditions can easily be cho-

sen to test particularly interesting phenomena (e.g. the \volatility smile"

discussed in Section IV).

If you do not use GMM, and you �t option prices to model prices by

minimizing sum of squared errors, then it is not clear how you conduct tests of

goodness of �t, or tests for signi�cance of individual parameters (e.g. Bakshi,

Cao and Chen (1998) are unable to perform statistical tests). However, for

example, if you allow for di�erent implied volatilities across strike prices,

then once the parameters are estimated, GMM allows for the traditional

Wald-type tests of whether the parameters are the same.

GMM subsumes OLS, 2SLS, 3SLS, and other methods, so it is a very gen-

eral technique (Ogaki (1993)). Like these methods, it is very easy to incorpo-
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rate VCV estimations that allow for heteroskedasticity and autocorrelation

in the moment conditions { using White or Newey-West VCV estimators.

The model speci�cations are used to create the GMM moment conditions.

It follows that you do not have to proxy for these elements of the model (which

would introduce error). That is, rather than proxying for a parameter and

then regressing a left hand side dependent variable on this and other proxies

to see if there is a relationship, you set up moment conditions that allow

you to deduce the parameter from the data and the functional form of the

model. The relationship is then tested using standard errors on individual

parameters, and the chi-squared test for the overall model. For example, a

consumption-based asset pricing model would not necessarily need a proxy

for a consumption parameter.

You can look at the minimizations of speci�c GMM moment conditions

to determine what aspect of the data is not being properly captured by the

model. However, you should be careful of data mining in this instance. In

fact if you look at the errors in any moment condition over time you may

be able to capture speci�c sections of time where the model is not consistent

with the data and this could indicate a regime shift.
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IV Implementing GMM

A Choosing Moments

GMMmoments should be economically sensible re
ections of the model being

estimated. For example, elsewhere we �t the Black and Scholes (1973) option

pricing model to market prices of SPX (i.e. S&P500 index) options using

six moneyness/maturity classes.7 In this case, the most obvious choice of

moments is those that match market prices of options to model prices.

ft(�) =

266666666666664

ft;1(�)

ft;2(�)

...

ft;6(�)

377777777777775
=

2666666666666666666666664

c
(mkt)
t;1;1 � c

(BS)
t;1;1(�1;1)

c
(mkt)
t;1;2 � c

(BS)
t;1;2(�1;2)

c
(mkt)
t;1;3 � c

(BS)
t;1;3(�1;3)

c(mkt)
t;2;1 � c(BS)t;2;1(�2;1)

c
(mkt)
t;2;2 � c

(BS)
t;2;2(�2;2)

c
(mkt)
t;2;3 � c

(BS)
t;2;3(�2;3)

3777777777777777777777775

where � = [�1;1 �1;2 : : : �2;3]
0 is the vector of implied volatilities to be esti-

mated for the six moneyness/maturity classes over the sample period, c
(mkt)
t;i;j

is the market price of a call option falling in the ith maturity class, and the
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jth moneyness class during time window t, and c
(BS)
t;i;j (�i;j) is the dividend-

adjusted Black-Scholes call pricing formula for the same option with the

implied volatility �i;j as the plug �gure. If the �i;j are allowed to di�er from

one another in the estimation, then the GMM estimation is exactly-identi�ed

(number of parameters equals number of moments). If we restrict any of the

�i;j to be equal, then the estimation is over-identi�ed.

In the case of the Black-Scholes estimation we may be tempted to append

moments to the vector ft to re
ect Black-Scholes assumptions for geometric

Brownian motion. These assumptions include that the continuously com-

pounded returns (i.e. log of the price relative) are normally distributed (no
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skewness or kurtosis) with no autocorrelation (as in Equation (10)).

ft(�) =

266666666666666666666666666666666666664

ft;1(�)

ft;2(�)

...

ft;6(�)

ft;7(�)

ft;8(�)

ft;9(�)

ft;10(�)

ft;11(�)

377777777777777777777777777777777777775

=

2666666666666666666666666666666666666664

c
(mkt)
t;1;1 � c

(BS)
t;1;1(�1;1)

c
(mkt)
t;1;2 � c

(BS)
t;1;2(�1;2)

...

c
(mkt)
t;2;3 � c

(BS)
t;2;3(�2;3)

loge
�

St
St�1

�
� �h

loge
�

St
St�1

�
� �

i2 � �2hh
loge

�
St
St�1

�
� �

i
�
h
loge

�
St�1

St�2

�
� �

i
� � � �2hh

loge

�
St

St�1

�
��

i3
�3
h

�  h
loge

�
St

St�1

�
��

i4
�4
h

� �

3777777777777777777777777777777777777775
(10)

where St is the SPX index level at time t, and � = [�1;1 �1;2 : : : �2;3 � �h �  �]
0

where the �i;j are as before, � is the mean return, �h is the historical sample

standard deviation of returns (as opposed to the implied volatilities which

are forward looking), � is the �rst order autocorrelation of returns,  is the

skewness of returns, and � is the kurtosis of returns. However, this expanded

set of moment conditions does not make sense. In testing the assumptions

of the model rather than the actual quality of the pricing we risk rejecting a
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model with good pricing that is robust to assumptions that are not strictly

true. Testing assumptions rather than pricing is one step removed from what

is economically important. In other words, we do not really care if stock re-

turns are normally distributed in this case as long as the model prices are

close to the market prices.

In the over-identi�ed case, adding the above-mentioned or any other \non-

sense moments" serves to increase the degrees of freedom of the chi-squared

test of over-identifying restrictions and makes it less likely that the test will

reject the model. This amounts to a gaming of the chi-squared test and

thus we believe that any highly over-identi�ed GMM estimation should be

viewed with substantial skepticism. This is so even if the underlying model

is rejected because of the potential for both Type I and Type II errors.

B Exactly- versus Over-Identi�ed Estimation

When a GMM estimation is exactly-identi�ed there is a �̂ that sets g(�̂) �
1
T

PT
t=1 ft(�̂) identically to zero. This means that whatever the weighting

matrix used, the same parameter estimates will be obtained. In some exactly-

identi�ed cases (e.g. our Black-Scholes estimation) a numerical optimization
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is needed to locate the parameter estimates that set g to zero, but in other

cases no numerical technique is required.8 The chi-squared goodness of �t

test no longer applies in the exactly-identi�ed case.

Testing whether Black-Scholes describes the data reduces to testing whether

the \volatility smile" is 
at or not (H0 : �i;1 = �i;2 = �i;3 for each maturity

class i). This may be achieved using a standard Wald test in the exactly-

identi�ed case.9 An alternative to the exactly identi�ed approach is to keep

the same moments, but impose �i;1 = �i;2 = �i;3 = �i, say, for each maturity

class i during the estimation. The GMM estimation is then over-identi�ed

and we cannot conduct a standard Wald test of whether the smile is 
at,

but if we have falsely forced the smile to be 
at, then the moments will be

non-zero, and the chi-squared test of over-identifying restrictions will reject

the model. Our experience with GMM estimation of Black-Scholes leaves us

strongly in favor of exactly-identi�ed estimation for reasons summarized in

Table 2. We concede that in some other applications the trade-o� between

exactly- and over-identi�ed estimation might favor over-identi�ed estima-

tion. Hints for handling multiple local optima appear in Table 3. Pseudo

code for GMM implementation of our Black-Scholes estimation appears in

Appendix A.
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C Newey-West Lag Lengths

When implementing GMM using Newey-West standard errors, the choice of

lag lengthm in Equation (8) is important for two reasons. Firstly, insuÆcient

lag length can lead to inappropriate standard errors (either too large or too

small depending upon the nature of the dependence in the data). Secondly,

insuÆcient lag length can cause a lack of smoothness in the GMM objective

function that can slow numerical optimization (recall that W = 
�1 is esti-

mated via Newey-West). A practical method for choosing the lag length m

in the Newey-West estimator is to estimate the parameters and their stan-

dard errors using m = 5 and then re-estimate everything using increasing

lag lengths until the lag length has negligible e�ect on the standard errors of

the parameters to be estimated. In our Black-Scholes estimation we noticed

substantial di�erences in both standard errors and quality of optimization as

our lag lengths increased up to about 35, but beyond lag 50 (which we used)

there was no change. One rule of thumb is to use m =
p
T + 5 where T is

the sample size. In our case, T � 2500; so 55 lags is suggested (in agreement

with our empirical �ndings).
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V Conclusion

We believe the GMM estimation technique is underutilized in empirical �-

nance. The goal of this paper is to provide a practical guide to GMM in

order to promote wider use. We use a simple example to explain how and

why Generalized Method of Moments (GMM) works. We identify problem

areas in implementation and we give tactical estimation advice and trou-

bleshooting tips. We pay particular attention to proper choice of moment

conditions, exactly-identi�ed versus over-identi�ed estimation, estimation of

Newey-West standard errors, and numerical optimization in the presence of

multiple local extrema.
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A Pseudo-Code for GMM

% INITIAL DATA MANIPULATION

% load options and t-bill data

load data=[day time-stamp call put S X tau r]

% infer dividend yields

q=(1/tau).*log(S./(call-put+X.*exp(-r.*tau))

% screen for no-arbitrage violation

F=S.*exp((r-q).*tau)

failure=call<exp(-r.*tau).*(F-X).*(sign(log(F./X))+1)/2

data(find(failure))=void

% FORM GMM MOMENTS AND OPTIMIZE

theta=initialguess

while update./theta>sqrt(my computer's floating point precision)10

d=(log(S./X)+(r-q+(theta.^2)/2).*tau)./(theta.*sqrt(tau))
f=(c-(S.*exp(-q.*tau).*N(d)-...

X.*exp(-r.*tau).*N(d-theta.*sqrt(tau))))'

g=mean(f')'

% FIND DERIVATIVE OF g W.R.T. THETA

dfdth=S.*exp(-q.*tau).*(sqrt(tau)/sqrt(2*pi)).*exp(-((d.^2)/2))
dg=diag(mean(dfdth)) % same as Gamma

% USE WHITE AND NEWEY-WEST TO FIND W=OMEGA

WHITE=(1/T)*f*f'; NWEST=0

m=50

for j=1:m

phij=(1/T)*f(:,j+1:T)*f(:,1:T-j)'

NWEST=NWEST+(1-(j/(m+1)))*(phij+phij')

end

NWEST=NWEST+WHITE

W=inverse(NWEST)

update=inverse(dg'*W*dg)*(dg'*W*g)

theta=theta+update

end while loop

% CALCULATE STANDARD ERRORS AND DO TESTS
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OMEGA=WHITE

VGMM=inv(Gamma'*inv(OMEGA)*Gamma)

SEWHITE=sqrt(diag(VGMM)/T)

OMEGA=NWEST

VGMM=inv(Gamma'*inv(OMEGA)*Gamma)

SENWEST=sqrt(diag(VGMM)/T)

print [theta SEWHITE SENWEST]

% TEST VOLATILITY SMILE

R1=[...

1 -1 0 0 0 0

0 1 -1 0 0 0

0 0 0 1 -1 0

0 0 0 0 1 -1]

testsmile=(R1*theta)'*inv(R1*VGMM*R1'/T)*(R1*theta)

pvalue=1-cdf('chi2',testskew,#rows(R))]

print [testsmile pvalue]

% TEST VOLATILITY TERM STRUCTURE

R2=[...

1 0 0 -1 0 0

0 1 0 0 -1 0

0 0 1 0 0 -1]

testterm=(R2*theta)'*inv(R2*VGMM*R2'/T)*(R2*theta)

pvalue=1-cdf('chi2',testterm,#rows(R2))

print [testterm pvalue]
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B Footnotes

1. The existence of multiple roots to Equation (2) could cause problems

for an optimizing algorithm. However, comparison of �̂(2) to �̂(1) should

enable the correct root to be located. Thus, the use of both moments

becomes necessary in this case.

2. We shall see in Section IV that you sometimes need to begin a GMM

optimization routine with an identity weighting matrix to get initial

values for the full estimation.

3. The reader can con�rm that Equation (5) shares the same property:

multiply it by T and it is asymptotically chi-squared { with one degree

of freedom.

4. Note also a local minimum visible in Figure 1 at approximately � = 3.

We discuss over-identi�ed estimation and the existence of local extrema

in Section IV.

5. Stationarity is stronger than \identically distributed," but weaker than

IID, since stationarity does not imply independence. Ergodicity is

weaker than independence { it is a form of average asymptotic indepen-
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dence that restricts dependence or memory in a sequence. Stationary

and ergodicity together are strictly weaker than IID. See White (1984,

pages 41-46) for details.

6. The ijth element of 
 is given by E
h
1
T

PT
t=1

PT
s=1 fi(Xt; �0)fj(Xs; �0)

i
;

where fi, and fj are the i
th and jth elements respectively of the vector

f .

7. A much-expanded version of the current paper titled \A Practical

Guide to GMM (with Applications to Option Pricing)" is available

upon request from the authors.

8. If you are estimating the mean, variance, skewness, kurtosis, and other

simple parameters then not only is the GMM estimation exactly iden-

ti�ed, but no numerical optimization technique is required because the

traditional estimators set the mean of the GMM moments to zero. In

this case, the optimal weighting matrix is not needed in the optimiza-

tion, but is still used to calculate standard errors.

9. For �̂ = [�1;1 �1;2 �1;3 �2;1 �2;2 �2;3 ]
0 ; we test the volatility smile for
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both sets of maturities by forming the restriction matrix

R1 =

266666666666664

1 �1 0 0 0 0

0 1 �1 0 0 0

0 0 0 1 �1 0

0 0 0 0 1 �1

377777777777775
;

and constructing the test statistic (R1�̂)
0[R1

dVGMMR
0

1=T ]
�1(R1�̂) where

dVGMM is the estimated asymptotic VCV of �̂ (hence our division by

T ). The test statistic provides a Wald test asymptotically chi-squared

with four degrees of freedom.

10. See discussion of multiplicative tolerance factors in Press et al. (1996,

p398, p410).
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D Tables

Parameter Simulation Results
T 100 1,000 10,000 100,000

�̂(1) 6.030 9.252 9.475 10.491

�̂(2) 9.164 10.408 10.561 10.392
�̂GMM 14.899 11.337 10.439 10.481

SEWHITE 9.422 1.745 0.620 0.240
SENW 9.146 1.742 0.621 0.239

�2
1 3.075 1.184 7.259 0.142

p-value 0.080 0.277 0.007 0.706

Table 1: Simulated Student-t Data.
For sample size T we simulate IID Student-t data with � = 10 degrees of
freedom. The MOM estimators �̂(1), and �̂(2) are reported along with the
GMM estimator �̂GMM . Both White and Newey-West standard errors are
reported along with the chi-squared goodness of �t test (critical 5% value
3.842).
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Why we Prefer Exactly- to Over-Identi�ed Estimation

� Exactly-identi�ed estimation yields more information
(e.g. a �i;j for each moneyness/maturity class).

� Exactly-identi�ed estimation allows tests of many
di�erent speci�c hypotheses (e.g. H0 : �i;1 = �i;2 = �i;3).

� Over-identi�ed estimation produces parameters that are
not necessarily economically meaningful if model rejects,
and this goes hand-in-hand with the existence of multiple
local minima in the objective function.

� Exactly-identi�ed estimation converges very quickly
using any hill climber. Over-identi�ed estimation
converges very slowly with all hill climbers.

� Exactly-identi�ed estimation can be run with W = I

because solution is independent of weighting matrix.
You save time by not re-computing W via Newey-West
at each iteration. Also decreases complexity of code.

� You know if solution to exactly-identi�ed estimation
is global minimum because you know a priori that
objective function is zero at global optimum { though
uniqueness is not guaranteed.

� You cannot game the exactly-identi�ed estimation as you
can the over-identi�ed estimation.

Table 2: Why we Prefer Exactly- to Over-Identi�ed Estimation
This is a summary of why we prefer exactly- to over-identi�ed estimation in
an option pricing context. In the table \W" is the GMM weighting matrix.
The null hypothesis H0 : �i;1 = �i;2 = �i;3 states that the volatility smile is

at. That is, �i;j is constant across moneyness classes j for each maturity
class i. Two strikes against exactly-identi�ed estimation is that it eats de-
grees of freedom and that over-identifying may increase power by optimally
combining multiple moments to estimate a parameter. The former is not
a big problem because GMM uses asymptotic results so you need plenty of
data anyway.
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Hints for Handling Local Extrema
� Use many starting points
� Upon convergence restart routines like DFP or BFGS

that start with W = I and update W .
� Allow for unorthodox step lengths that look far

beyond nearby extrema during line searches.
� We prefer a simple Newton routine with unorthodox

step lengths (slow but sure) to a canned higher-tech
BFGS (which is fast but �nds local extrema).

Table 3: Advice for Handling Local Extrema in Numerical Optimization of
Objective Functions
In the table \DFP" is the Davidon-Fletcher-Powell hill climber and \BFGS"
is the Broyden-Fletcher-Goldfarb-Shanno hill climber (Press (1996, pp425-
428)).
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Figure 1: Objective Function for Simulated Student-t data.
For 1,000 independent drawings from a Student-t with � = 10 degrees of free-
dom, we calculate the objective function Q(�̂) = g(�̂)0Wg(�̂) whereW = 
̂�1

is the estimated asymptotic VCV of g(�) (estimated using the Newey-West
technique described later in this paper). Our original two MOM estimators
are �̂(1) = 9:252 and �̂(2) = 10:408 (labelled \MOM1," and \MOM2"). The
objective function is minimized at the GMM estimator �̂ = 11:337 (labelled
\GMM").
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