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Interest Rate Sensitivities of Bond Risk Measures
Timothy Falcon Crack and Sanjay K. Nawalkha

We present a simple expression for the sensitivity of duration,
convexity, and higher-order bond risk measures to changes in term-
structure shape parameters. Our analysis enables fixed-income
portfolio managers to capture the combined effects of shifts in term-
structure level, slope, and curvature on any specific bond risk
measure. These results are particularly important in environments
characterized by volatile interest rates. We provide simple numerical
examples.

In highly volatile interest rate environments, changes in the term structure of

interest rates are often characterized by extreme variations in level, slope, and

curvature. For example, as illustrated by Breeden (1994):

The slope of the term structure moved from a steep slope of over

300 basis points in 1987 to an inverted yield curve (negative slope)

just two years later in 1989, and then back up to a very steep yield

curve in 1992 with a slope of 350 basis points. These movements

in the slope are almost as large as the movements in the levels of

rates. (pp. 16–17)

In such volatile interest rate environments, bond risk measures, such as

duration and convexity, may change rapidly in response to the level and shape

of the term structure of interest rates. Although researchers have analyzed the

sensitivity of a bond’s duration to changes in the bond’s yield, little is known

about the interest rate sensitivity of duration, convexity, and other higher-order
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bond risk measures to changes in level, slope, and curvature of the term

structure.

We developed a theoretical framework to answer the following types of

questions: How does the duration of a bond change with respect to a change in

the slope of the term structure? How does the convexity of a bond change with

respect to a change in the level of the term structure? Do the duration and

convexity of a barbell portfolio change more rapidly than those of a bullet

portfolio?

These questions are relevant for bond-portfolio managers, who are often

required to maintain target durations for their portfolios. For example, certain

bond portfolios (e.g., barbell portfolios) may experience rapid changes in their

duration; hence, the managers of these portfolios will have to rebalance often to

maintain a target duration. Managers of such financial institutions as

commercial banks, savings and loans associations, pension funds, and

insurance companies may also be concerned about these questions. The

Federal Deposit Insurance Corporation Improvement Act of 1991 instructs

regulators to take into account the interest rate risk exposure of a bank in

determining its capital adequacy. In fact, the Federal Reserve Board and the

Office of Thrift Supervision have come up with specific proposals to implement

the recommendations in the FDIC Improvement Act. 1 As a result, thousands of

U.S. commercial banks and S&Ls have begun the process of measuring the

durations of their assets and liabilities. The managers of these depository
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institutions thus need to know the sensitivities of their asset and liability

durations to general interest rate changes in order to maintain target levels of

interest rate risk exposure.

Bond Risk Measures

The simplest immunization model is the Macaulay duration model: It assumes

infinitesimal parallel shifts in the term structure (Macaulay 1938). The

convexity and M2 models (see Note 6) are more realistic: They allow for

noninfinitesimal, nonparallel shifts (Fong and Vasicek 1984; Fong and Fabozzi

1985; Granito 1984; Bierwag, Kaufman, and Latta 1987, 1988). The duration

vector models are even more general: They recognize that real-world shifts in

term structure may be combinations of level changes, slope changes, curvature

changes, and so on (Chambers, Carleton, and McEnally 1988; Prisman and

Shores 1988; Bierwag et al. 1988).

Up to 95 percent of returns to U.S. Treasury security portfolios are

explained by term-structure level shifts, slope shifts, and curvature shifts

(Litterman and Scheinkman 1991; Jones 1991; Willner 1996; Jamshidian and

Zhu 1997).2 To reflect this reality, we assumed that the continuously

compounded initial yield curve, r(t), is given by the polynomial

                                                                                                                          
1 See Board of Governors of the Federal Reserve System (1992) and Office of Thrift Supervision
(1991).
2 In fact, the relative lack of importance of higher-order changes in term-structure shape
allowed Jamshidian and Zhu to restrict their attention to a three-factor yield-curve model
using only level, slope, and curvature changes. Their limited-factor model (after being made
discrete via a multinomial distribution) provides computational efficiency in Monte Carlo
simulation of multicurrency portfolios for risk-management purposes.
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r(t) = A0 + A1t + A2t2 + A3t3 + . . . + AKtK, (1)

where A0, A1, and A2 are, respectively, level, slope, and curvature parameters,

and K is sufficiently large (as in Chambers, Carleton, and McEnally 1988,

Chambers, Carleton, and Waldman1984, and Prisman and Shores). Willner

also used level, slope, and curvature parameters based on a model of the yield

curve (using transcendental functions). 3 Willner used these parameters in

conjunction with nonstandard level, slope, and curvature durations, however,

to capture changes in bond prices. We addressed a different but related issue—

sensitivity of traditional duration measures to changes in the shape of the yield

curve. Although simple, the generality of Equation 1 allowed us to capture a

wide class of changes in the shape of the term structure.4

Suppose a bond pays cash flows C at times t = 1, . . . , N and cash flow F

at time t = N. Then, the bond has price P as follows:
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3 "Transcendental" here means not capable of being determined by any combination of a finite
number of equations with rational integral coefficients.
4 Alternatively, the continuously compounded yield curve r(t) can be expanded around t = H,
where H is a particular horizon, which produces the equation r(t) = B0 + B1(t – H) + B2(t – H)2 + .
. . + BK(t – H)K. The expansion in this equation is useful in deriving conditions for immunizing a
bond portfolio at time horizon H. Unlike Equation 1, in which the parameters A0, A1, and A2

measure the changes in the level, slope, and curvature in r(t) at t = 0, the parameters B0, B1,
and B2 measure the changes in the level, slope, and curvature in r(t) at horizon t = H. Because
our purpose was to derive the sensitivities of duration risk measures to short-term interest rate
changes, not to derive immunization conditions, we have used Equation 1 even though it is
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where e is Euler’s standard constant, approximately equal to 2.718, that is

used in continuous compounding.

If the yield curve now shifts in a noninfinitesimal, nonparallel fashion

from r(t) to r′(t), then5

r′(t) = (A0 + ∆A0) + (A1 + ∆A1)t + (A2 + ∆A2)t2 + (A3 + ∆A3)t3 + . . .

+ (AK + ∆AK) tK

= A0′ + A1′t + A2′t2 + A3′t3 + . . . + AK′tK, (3)

where Ai′ ≡ Ai + ∆Ai for each i. In Equation 3, ∆A0 is a level change, ∆A1 is a

slope change, ∆A2 is a curvature change, and so on. The new bond price P′ is
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trt FeCeP ′−
=

=

′− +=′ ∑ (4)

Let ∆P ≡ P′ – P. Then, it can be shown that the instantaneous return on

the bond ∆P/P satisfies Equation 5:6

                                                                                                                          
less general than the equation given in this note. See Nawalkha and Chambers (1997) for
further explanation.
5 Note that r′ here is not a mathematical derivative but, rather, a perturbation of the original r.
6 The expansion in Equation 5 is of the form
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and Ωl,k is the collection of sets of form {r0, . . . ,rl} that satisfy both
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where the standard order-m bond duration measure, D(m), is defined as in

Equation 6.

( )
P

FeNCet

mD

NNrmttr
Nt

t

m )()(

1

−−
=

=

+






≡
∑

(6)

Equation 5 is the duration vector model. Immunization in this context

requires matching D(m) to Hm for m = 1, 2, . . . . Immunizing with D(2) and D(3)

in addition to D(1) captures up to 90 percent of the risk that was not already

captured by D(1)—accounting for a combined total of up to 95 percent of all
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Thus, #Ωl,k is the number of ways you can draw k numbers with replacement from the set {0, 1,
. . . , l} so that the k numbers sum to l (and rh counts how many h’s you use). For example, the
fourth term in the expansion in Equation 5 is –D(4)α4, where α4 = [∆A3 – (∆A0)(∆A2)/2! –
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risks. Using the first five duration measures provides nearly perfect

immunization (e.g., Nawalkha and Chambers 1997).

Taking the first term only in Equation 5 yields

0)(1( AD
P

P
∆−≈

∆
), (7)

which is the traditional Macaulay duration model with parallel shifts in the

term structure.

The more terms taken, the more realistic the model. For example, taking

the first two terms in Equation 5 gives
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The coefficient of D(2) in Equation 8 illustrates the important difference

between the traditional and more recent views of convexity. The traditional view

is that the magnitude of (∆A0)2/2! (i.e., parallel shifts) dominates the magnitude

of ∆A1 (i.e., slope shifts). Thus, convexity is always desirable. The recent view is

that the magnitude of ∆A1 dominates the magnitude of (∆A0)2/2!. Thus, the

desirability of convexity depends on whether the sign of the slope change ∆A1 is

negative or positive (this view is also consistent with Fong and Fabozzi). The

                                                                                                                          
(∆A1)2/2! + (∆A0)2(∆A1)/2! – (∆A0)4/4!]. A full derivation of the result from first principles is
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empirical studies of Kahn and Lochoff (1990) and Lacey and Nawalkha (1993)

confirm the more recent view of convexity.

Taking the first three or more terms in Equation 5 produces duration

vector models of various lengths. These models have been shown to improve

hedging performance significantly (Chambers, Carleton, and McEnally;

Nawalkha and Chambers).

Now, take a look at how the bond risk measures [D(1), D(2), D(3), and so

on] change for a nonparallel change in the term structure.

Sensitivity of Risk Measures to Nonparallel Rate Changes

Duration, convexity, and other higher-order duration measures capture the

sensitivity of bond returns to nonparallel changes in interest rates (changes in

level, slope, curvature, and so on). This section explores how duration,

convexity, and other higher-order duration measures themselves change with

nonparallel interest rate shifts.

Result: The duration measure given in Equation 6 has the following

sensitivity to general interest rate changes:7
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available from the authors.
7 The M2 measure (Fong and Vasicek; Fong and Fabozzi) is given by

M2 = D(2) – 2HD(1).
Equation 9 may be used directly to deduce ∂M2/∂Ai = M2D(i + 1) – [D(i + 3) – 2HD(i + 2)]. This is
of analogous functional form to Equation 9 except that D(m) is replaced by M2 = M2(m)|m=2 =
[D(m) – 2HD(m – 1)]m=2.
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For the proof, see Appendix A.

To understand the usefulness of Equation 9, consider several cases of

interest.

Case 1. Let m = 1 and i = 0. Then,

).2()]1([
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Hence, the sensitivity of duration to changes in term-structure level is

duration squared minus convexity.

Case 2. Let m = 1 and i = 1. Then,
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Hence, the sensitivity of duration to changes in term-structure slope is

given by the product of duration and convexity minus D(3).

Case 3. Let m = 2 and i = 0. Then,
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Coincidentally, this case is the same as Case 2. The sensitivity of

convexity to changes in term-structure level is given by the product of

duration and convexity minus D(3).

Case 4. Let m = 2 and i = 1. Then,
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Hence, the sensitivity of convexity to changes in term-structure slope is

convexity squared minus D(4).

These cases demonstrate the usefulness and generality of the result in

Equation 9. Indeed, the result in Equation 9 lets one express the finite

difference ∆D(m) as follows:8
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In the next section, we use Equation 10 to demonstrate the importance

of looking beyond parallel shifts when accounting for the sensitivity of duration

and convexity to general term-structure changes.

Numerical Examples

We present a realistic example of how bond risk measures change with

nonparallel interest rate changes. Before looking at numbers, we note that

shifts in term-structure level, slope, and curvature are not independent

                                      
8 We approximated the finite difference ∆D(m) using the definition of the total differential
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(Litterman and Scheinkman; Jones; Willner; Mann and Ramanlal 1997). For

example, it is well known that a shift upward (downward) in the term structure

is typically associated with a flattening (steepening) of the term structure

(Jones; Mann and Ramanlal). Jones presented a matrix showing how level,

slope, and curvature changes were correlated in the past.

We consider a bullet and two barbell bonds, with cash flows given in

Table 1. We chose the unusual amounts for comparability; the bonds have

identical prices and durations under the initial term structure. We plugged the

Ai parameters in Table 2 into Equation 1 to generate the initial yield curve, r(t),

which is tabulated in Table 3 and plotted in Figure 1.

We plotted the effect on D(1) of many combinations of changes in term-

structure level and slope for the bullet and the two barbells. As Figures 2–4

show, the sensitivity of D(1) to level and slope shifts increases as the bond

being considered changes from a bullet(5) to a barbell(3, 7), and then to a

barbell(1, 9).9

One particular nonparallel interest rate shift is described by the

parameters ∆Ai and Ai′ in Table 2. These term-structure parameters describe

an increase in level (∆A0 = 0.01), a decrease in slope (∆A1 = –0.0007), a decrease

in curvature (∆A2 = –0.00002), and a small higher-order change (∆A3 = –

0.000001). The result is the new yield curve, r′(t), of Table 3 and Figure 1.

                                      
9 We obtained similar plots (not shown) for the sensitivity of D(2) and D(3) to level and slope
shifts.
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For each of the three bonds, the effect of the shift r(t) → r′(t) on each of

D(1), D(2), and D(3) is illustrated in, respectively, Table 4, Table 5, and Table

6. This particular term-structure shift produces small decreases in D(1), D(2),

and D(3) for the two barbell bonds (and no change for the bullet). If we

restricted our attention to the parallel shift only, however (that is, we took only

the first term in the summation in Equation 10), we would incorrectly deduce

that each of the barbells experiences a sizable decrease in D(1), D(2), and D(3)

(see Tables 4, 5, and 6). Taking two terms (i.e., level and slope) and then three

(i.e., level, slope, and curvature) in the summation in Equation 10 decreases

the magnitude of our estimation errors substantially. Had we used four terms

here, we would have perfectly captured the D′(m)’s (because we have assumed

changes in only the first four Ai’s). Note also that the magnitude of the errors

increases from a bullet(5) (no error) to a barbell(3, 7) and then to a barbell(1, 9).

To understand the errors in Tables 4, 5, and 6, and how they change

with the number of terms in the expansion and with the different types of

bonds, one need only look at Figures 2, 3, and 4. These figures reveal that D(1)

decreases with increasing level or slope (except for the bullet). Thus, if level

increases and slope decreases but analysts account for the level shift only, they

will overestimate the fall in D(1). Including a second term in the expansion

accounts for the compensating effect of the slope decrease and increases the

accuracy of the estimated change in D(1). Adding a third term reduces the error

even further. Also, the “wider” the barbell, the more sensitive its D(m)’s to



13

changes in the term structure (as in Figures 2, 3, and 4) and, therefore, the

larger the error from ignoring slope and curvature changes.

Finally, note that although we chose the three bonds to have the same

initial durations and prices, the nonparallel rate change, as Table 7 shows,

produces quite different effects on their prices—which is a simple reminder of

the importance of looking beyond parallel term-structure shifts.

Conclusion

The generalized expression we presented for the sensitivity of duration,

convexity, and higher-order bond risk measures to nonparallel rate changes is

useful for capturing the combined effects of term-structure level, slope, and

curvature shifts on bond risk measures in volatile interest rate environments.

We demonstrated that durations and convexities of barbell portfolios are

generally more sensitive to changes in the level and shape of the term structure

than durations and convexities of bullet portfolios. The results reported here

may help fixed-income managers in their portfolio selection and rebalancing

strategies as they respond to nonparallel interest rate changes.
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Appendix. Proof of Equation 9
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We now use Equation A2 to derive the main result (text Equation 9), which was

to be proved:
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Figure 1: Yield Curves r(t) and r0(t).
The initial yield curve r(t) and the new yield curve r0(t) are generated by
the parameters in Table 2. These curves are also tabulated in Table 3.

18



−0.05

0

0.05

−0.02

0

0.02

0.04

0

2

4

6

8

Level Change
Slope Change

D
(1

)

Figure 2: D(1) for the Bullet(5) Bond as a Function of Changes (in Percent-
age Points Per Annum) in Term-Structure Level and Slope

19



−0.05

0

0.05

−0.02

0

0.02

0.04

0

2

4

6

8

Level Change
Slope Change

D
(1

)

Figure 3: D(1) for the Barbell(3, 7) Bond as a Function of Changes (in
Percentage Points Per Annum) in Term-Structure Level and Slope

20



−0.05

0

0.05

−0.02

0

0.02

0.04

0

2

4

6

8

Level Change
Slope Change

D
(1

)

Figure 4: D(1) for the Barbell(1, 9) Bond as a Function of Changes (in
Percentage Points Per Annum) in Term-Structure Level and Slope

21



Tables

t Bullet(5) Barbell(3,7) Barbell(1,9)

1 0.00 0.00 39.37
2 0.00 0.00 0.00
3 0.00 44.19 0.00
4 0.00 0.00 0.00
5 100.92 0.00 0.00
6 0.00 0.00 0.00
7 0.00 58.47 0.00
8 0.00 0.00 0.00
9 0.00 0.00 68.93
10 0.00 0.00 0.00

Table 1: Cash Flows to the Three Bonds.
These are the assumed dollar cash ows to the three bonds. The unusual
amounts are chosen for comparability (the bonds have identical prices and

durations under the initial term structure).

i Ai A0

i
�Ai

0 0.045000 0.055000 0.010000
1 0.004000 0.003300 -0.000700
2 -0.000300 -0.000320 -0.000020
3 0.000015 0.000014 -0.000001

Table 2: Yield Curve Parameters and Assumed Changes.
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t r(t) r0(t) �r(t)

0 4.50 5.50 1.00
1 4.87 5.80 0.93
2 5.19 6.04 0.85
3 5.47 6.24 0.77
4 5.72 6.40 0.68
5 5.94 6.52 0.59
6 6.14 6.63 0.49
7 6.34 6.72 0.38
8 6.55 6.81 0.26
9 6.76 6.90 0.14
10 7.00 7.00 0.00

Table 3: Yield Curves Implied by Parameters (all numbers in percent).

Bond D(1) D
0(1) dD0(1)

1

dD0(1)
2

dD0(1)
3

Bullet(5) 5.00 5.00 5.00 (0.00) 5.00 (0.00) 5.00 (0.00)
Barbell(3,7) 5.00 5.00 4.96 (-0.73) 4.99 (-0.17) 4.99 (-0.05)
Barbell(1,9) 5.00 4.99 4.84 (-3.09) 4.95 (-0.85) 4.98 (-0.26)

Table 4: D(1) and Estimated D(1).

While r(t) changes to r0(t), D(1) changes to D0(1). dD0(1)k estimates D0(1)
using the �rst k terms in Equation (6) for each of three di�erent bonds.

Percentage errors are in parentheses.

Bond D(2) D
0(2) dD0(2)

1

dD0(2)
2

dD0(2)
3

Bullet(5) 25.00 25.00 25.00 (0.00) 25.00 (0.00) 25.00 (0.00)
Barbell(3,7) 29.00 28.97 28.60 (-1.26) 28.88 (-0.30) 28.94 (-0.08)
Barbell(1,9) 41.05 40.94 39.40 (-3.77) 40.52 (-1.03) 40.87 (-0.32)

Table 5: D(2) and Estimated D(2).

While r(t) changes to r0(t), D(2) changes to D0(2). dD0(2)k estimates D0(2)
using the �rst k terms in Equation (6) for each of three di�erent bonds.

Percentage errors are in parentheses.
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Bond D(3) D0(3) dD0(3)
1

dD0(3)
2

dD0(3)
3

Bullet(5) 125.00 125.00 125.00 (0.00) 125.00 (0.00) 125.00 (0.00)
Barbell(3,7) 185.01 184.73 181.84 (-1.57) 184.05 (-0.37) 184.55 (-0.10)
Barbell(1,9) 365.43 364.47 350.43 (-3.85) 360.62 (-1.05) 363.27 (-0.33)

Table 6: D(3) and Estimated D(3).

While r(t) changes to r0(t), D(3) changes to D0(3). dD0(3)k estimates D0(3)
using the �rst k terms in Equation (6) for each of three di�erent bonds.

Percentage errors are in parentheses.

Bond P P 0 �P

Bullet(5) 75.00 72.83 -2.17
Barbell(3,7) 75.00 73.17 -1.83
Barbell(1,9) 75.00 74.20 -0.80

Table 7: Bond Prices Under the Two Yield Curves.
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